Page 3	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9790	01

Section B

21 (a) (i) A = pyruvate;

accept other names e.g. 2-oxopropanoic acid

B = reduced NAD/NADH **C** = NAD(*)

ignore attempts to balance equation [2]

(ii) cytosol/cytoplasm;

[1]

- (iii) 1 allows glycolysis to continue (during oxygen deficit);
- 2 regenerates NAD (for use in glycolysis);
 - 3 allows ATP production (to continue);
 - 4 (ATP) for (muscle) contraction;

accept details of ATP involvement in contraction

- 5, AVP;;
- 6 e.g. temporary storage of hydrogen/hydrogen transferred prevents accumulation of reduced NAD/AW
 - e.g. lactate transported areas with (more) oxygen (for oxidation)
 - e.g. lactate prevents damage to muscles by overexertion/AW

[max 4]

- **(b)** allow points linked to named enzymes
 - 1 tertiary structure/folded chain, held in place by, bonds/interactions between R groups;
 - 2 three correctly named bonds;

from:

hydrogen bond

accept H bond

ionic/electrovalent, bond

disulfide bond

hydrophobic interactions

van der Waal's (forces)

- 3 ref. specificity:
 - e.g. active site shape complementary to substrate shape
 - e.g. substrate binding to active site by lock and key mechanism
 - e.g. specific active site means enzyme catalyses only one specific, reaction/interconversion

accept active site in terms of tertiary and quaternary structure

- 4 idea that conformational changes occur to improve fit/induced fit, described;
- 5 (amino acids with) hydrophilic/polar, R-groups/side chains, on the outside/facing water/AW/ora hydrophobic, R-groups/central area;
- 6 solubility / interact with water / reactions occur in aqueous environment;
- 7, AVP;;
- 8 e.g. reference to primary and secondary protein structure
 - e.g. further detail of R-groups involved in catalysis
 - e.g. details of how structure lowers activation energy for catalysis

[max 4]

Page	4	Mark Scheme	Syllabus	Paper			
		Pre-U – May/June 2013	9790	01			
(c) 1	ea	each (nucleated) cell has both genes ; accept idea that all cells have the same gene information					
2		to differential expression/control of gene e pression;	on/control of gene expression/tissue-specific				
		•	n context of transcription				
3		use of data from 21.1 to qualify; in terms of genes, <i>LDH-A</i> and <i>LDH-B</i> transcribed ref. transcription factors required to initiate transcription/ref. to binding of RNA polymerase to promoter/ref. to transcription complex;					
4	ref						
5		AVP; e.g. developmental control e.g. control of assembly of transcribed polypeptides [m					
	e.g						
(4)	ref. (events leading to heart attack take place in the) coronary arteries ref. presence of, atheroma/atheromatous plaque, and, uneven/turbic blood flow; (causes) clot/thrombus, formation (by platelets); decreased blood flow caused by, stenosis/narrow(ed) lumen; accept no blood flow caused by blood flow accept embolism/described, linke blood flow accept thrombosis linked to reduce the stenomer of		cked lumen to reduced d blood flow e/				
	4/5	and 5	schaemia in context of hear	·			
	6	heart attack caused by, damage to/death	of, heart tissue;	[max 3			
(ii)	1 2						

accept named examples, e.g. cardiac muscle

3 (as) different tissues have different isoenzymes/each tissue has particular isoenzyme(s)/heart tissue will have particular isoenzymes;

accept other named tissue

- 4 *idea* of comparing test LDH isoenzyme concentrations (in blood) against normal concentrations;
 - detail use of Table 21.1 to max 2
- 5 results indicate tissue from where damage originates;
- 6 heart damage indicated by higher concentrations of, LDH-1/LDH-2;

accept HHHH/HHHM

- 7 presence of, LDH-3 / HHMM, indicates, brain / lung, damage / LDH-4 / HMMM, indicates, kidney / placenta, damage / LDH-5 / MMMM, indicates, liver / skeletal muscle, damage;
- 8 AVP;
 - e.g. ratio of isoenzymes may change with damage to different tissues e.g. useful in differentiating between conditions with tissue damage and those without (where symptoms exist)
 - e.g. (suggestion of) use of electrophoresis to identify the different isoenzymes present

[max 4]

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2013	9790	01

- (e) 1 base sequences are from the non-template/non-transcribed/AW, strand/polynucleotide;
 - 2 (m)RNA is equivalent to DNA strand shown except U replaces T/is complementary copy of transcribed strand of DNA;
 - 3 further detail from Fig. 21.2 and Table 21.2;
 - e.g. met start amino acid = AUG mRNA codon, so transcribed DNA would be TAC, instead of ATG
 - 4 either

stated similarity of nucleotide sequence;

- e.g. first 11, nucleotides/bases, identical
- e.g. first three triplets identical
- e.g. triplet, 5/9, the same

or

stated differences in nucleotide sequence;

accept codon for triplet

- e.g. fourth, sixth, seventh, eighth and tenth triplets different
- e.g. fourth triplet CTA in LDH-A but CTT in LDH-B
- e.g. sixth triplet GAT in LDH-A but GAA in LDH-B
- e.g. seventh triplet CAG in LDH-A but AAA in LDH-B
- e.g. eighth triplet CTG in LDH-A but CTC in LDH-B
- e.g. tenth triplet TAT in LDH-A but AAA in LDH-B
- 5 either

stated similarity of amino acid sequence; 10 amino acids in sequence

- e.g. first five amino acids are, met-ala-thr-leu-lys/the same
- e.g. eighth and ninth amino acids are, leu and ile/the same
- e.g. 70% homology

or

stated differences in amino acid sequence;

- e.g. sixth, asp v glu/seventh, gln v lys/tenth, tyr v ala
- 6 ref. same amino acid but different, nucleotide sequence/triplet;
 - e.g. first leu/fourth amino acid = CTA in LDH-A and CTT in LDH-B
 - e.g. second leu / eighth amino acid = CTG in LDH-A and CTC in LDH-B
- 7 explanation in terms of genetic code;
 - e.g. same amino acid can be specified by different codons/degeneracy of code/wobble on third nucleotide of codon
- 8 both have retained met, start amino acid;
- 9 AVP:
 - e.g. different amino acid sequences may allow for different polypeptide folding e.g. different amino acid sequences may lead to changes in, active site/other named or described site

reject if suggestion made that this would alter the type of reaction catalysed

- e.g. comment on evolutionary nature of the homology of the amino acid sequence
- e.g. additional use of data from, Fig. 21.2/Table 21.1, such as further examples of genetic wobble **[max 6]**

[Total: 26]